1 (i) Attempt use of product rule
M1 producing ... $+\ldots$ form
Obtain $3 x^{2} \mathrm{e}^{2 x}+2 x^{3} \mathrm{e}^{2 x}$
A1 2 or equiv
(ii) Attempt use of chain rule to produce $\frac{k x}{3+2 x^{2}}$ form

M1 any constant k
Obtain $\frac{4 x}{3+2 x^{2}}$
A1 2
(iii) Attempt use of quotient rule

M1 or equiv; condone u / v confusions
Obtain $\frac{2 x+1-2 x}{(2 x+1)^{2}}$ or $(2 x+1)^{-1}-2 x(2 x+1)^{-2}$
A1 2 or (unsimplified) equiv
[If $\ldots+c$ included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise ignore any inclusion of $\ldots+c$.]

6

2 (i) Obtain one of $\pm \ln (\pm x \pm 4)$
M1
Obtain correct equation $y=-\ln (x-4)$
A1 2 or equiv; condone use of modulus signs instead of brackets
(ii) State, in any order, S, S and T

State T, then S, then S
M1 or equiv such as S^{2}, T or $2 S, T$
A1 2 or equiv (note that S, S, T^{9} and S, T^{3}, S are alternative correct answers)

4

3 (i) Use $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Attempt to express equation in terms of $\sin \theta$
Obtain or clearly imply $6 \sin ^{2} \theta-11 \sin \theta-10=0$
M1 using $\cos 2 \theta= \pm 1 \pm 2 \sin ^{2} \theta$ or equiv
A1 3 or $-6 \sin ^{2} \theta+11 \sin \theta+10=0$
(ii) Attempt solution to obtain at least one value of $\sin \theta$

Obtain -41.8
Obtain -138
M1 should be $s=-\frac{2}{3}, \frac{5}{2}$
A1 allow -42 or greater accuracy
A1 3 or greater accuracy; and no others between -180 and 180
[Answer(s) only: award 0 out of 3.]

4 (i) Either: Integrate to obtain $k \ln x$
Use at least one relevant logarithm property
Obtain $k \ln 3=\ln 81$ and hence $k=4$

B1
M1
A1 3 AG; accurate work required

Or 1: (where solution involves no use of a logarithm property)

Integrate to obtain $k \ln x$
B1
Obtain correct explicit expression for k and conclude $k=4$ with no error seen

B2 3 AG ; e.g. $k=\frac{\ln 81}{\ln 6-\ln 2}=4$
Or 2: (where solution involves verification of result by initial substitution of 4 for k) Integrate to obtain $4 \ln x \quad$ B1
Use at least one relevant logarithm property M1
Obtain $\ln 81$ legitimately with no error seen
A1 3 AG; accurate work required
(ii) State volume involves $\int \pi\left(\frac{4}{x}\right)^{2} \mathrm{~d} x$

Obtain integral of form $k_{1} x^{-1}$
Use correct process for finding volume produced from S

Obtain $16 \pi-\frac{16}{3} \pi$ and hence $\frac{32}{3} \pi$

B1 possibly implied
M1 any constant k_{1} including π or not
M1 $\quad \int\left(k_{2} 2^{2}-k_{3} y^{2}\right) \mathrm{d} x$, including π or not with correct limits indicated; or equiv
A1 4 or exact equiv
7

5 (i) Attempt process for finding both critical values

Obtain -4
Obtain $\frac{2}{3}$
Attempt process for solving inequality
M1 squaring both sides to obtain 3 terms on each side or considering 2 different linear eqns/inequalities

Obtain $-4 \leq x \leq \frac{2}{3}$
A1
A1
M1 table, sketch, ...; needs two critical values; implied by plausible answer
A1 5 with \leq and not $<$
(ii) Use correct process to find value of $|x+2|$ using any value M1 ... whether part of answer to (i) or not Obtain $2 \frac{2}{3}$ or $\frac{8}{3}$ A1 2 dependent on 5 marks awarded in part (i) 7

6 (i) Attempt calculations involving 1.0 and 1.1
Obtain -0.57 and 0.76
Refer to sign change (or equiv for rearranged eqn)
(ii) Obtain correct first iterate

Carry out iteration process
Obtain at least 3 correct iterates
Obtain 1.05083

M1 using radians
A1 or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged)
A1 3 AG; following correct work only
B1 using value x_{1} such that $1.0 \leq x_{1} \leq 1.1$
M1 obtaining at least 3 iterates in all so far
A1 showing at least 3 dp
A1 4 answer required to exactly 5 d.p.
$.050826 \rightarrow 1.050827$;
$1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827$;
$1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow 1.050829 \rightarrow 1.050827]$
(iii) State or imply $\sec ^{2} 2 x=1+\tan ^{2} 2 x$

Relate to earlier equation
Deduce $2 x=1.05083$ and hence 0.525
B1
M1 by halving or doubling answer to (ii) or carrying out equivalent iteration process
A1 $\sqrt{ } \mathbf{3}$ following their answer to (ii); or greater accuracy
[SC: Rearrange to obtain $x=\frac{1}{2} \cos ^{-1}(2 x+3)^{-\frac{1}{2}}$
Use iterative process to obtain 0.525
B1
B1 2 or greater accuracy]
10

7

Differentiate to obtain $k_{1}(3 x-1)^{3}$
Obtain correct 12(3x-1) ${ }^{3}$
Substitute 1 to obtain 96
Attempt to find x-coordinate of Q
Obtain $\frac{5}{6}$

Integrate to obtain $k_{2}(3 x-1)^{5}$
Obtain correct $\frac{1}{15}(3 x-1)^{5}$
Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$
Attempt to find shaded area by correct process
Obtain $\left(\frac{32}{15}-\frac{1}{2} \times \frac{1}{6} \times 16\right.$ and hence) $\frac{4}{5}$

M1 any constant k_{1}
A1 or (unsimplified) equiv
A1

A1 or exact equiv

M1 any constant k_{2}
A1 or (unsimplified) equiv
A1
M1 integral - triangle or equiv
A1 or equiv
10

B1 or equiv
M1 condone sin/cos muddles and degrees
A1 3 in radians now
(ii) a Equate $x-\alpha$ to $\frac{1}{2} \pi$ or attempt solution
of $3 \cos x+3 \sin x=0$
Obtain $\frac{3}{4} \pi$
b Attempt correct process to find value of $3 x-\alpha$
Obtain at least one correct exact value of $3 x-\alpha$
Attempt at least one positive value of x
Obtain $\frac{1}{36} \pi$

M1 condone degrees here
A1 2 or $\ldots,-\frac{5}{4} \pi,-\frac{1}{4} \pi, \frac{7}{4} \pi, \ldots$; in radians now
*M1 with attempt at rearranging $\mathrm{T}(3 x)=\frac{8}{9} \sqrt{6}$
A1 $\pm \frac{1}{6} \pi, \pm \frac{11}{6} \pi, \ldots$
M1 dep *M
A1 4

9 (i) Attempt to find x-coord of staty point or complete square M1

Obtain $\left(\frac{3}{2},-9\right)$ or $4\left(x-\frac{3}{2}\right)^{2}-9$ or -9
State $\mathrm{f}(x) \geq-9$

A1 or equiv
A1 3 using any notation; with \geq

B1 not $1-1$, f is many-one, ... ; maybe implied if attempt is specific to this f
B1 2 AG; (more or less) correct sketch; correct relevant calculations, ...
(iii) Either: Attempt to find expression for g^{-1}

Obtain $\frac{1}{a}(x-b)$
Compare $\frac{1}{a}(x-b)$ and $a x+b$

Obtain at least $-\frac{b}{a}=b$ and hence $a=-1$
*M1 or equiv
A1 or equiv
M1 dep ${ }^{*}$ M; by equating either coefficients of x or constant terms (or both); or substituting two non-zero values of x and solving eqns for a
A1 4 AG ; necessary detail required; or equiv
[SC1: first two steps as above, then substitute $a=-1$: max possible M1A1B1]
[SC2: substitute $a=-1$ at start: Attempt to find inverse M1 Obtain $-x+b$ and conclude A1 2]
Or: State or imply that $y=\mathrm{g}^{-1}(x)$ is reflection
of $y=\mathrm{g}(x)$ in line $y=x$
B1
State that line unchanged by this reflection is perpendicular to $y=x$

M2
Conclude that a is -1
A1 4
(iv) State or imply that $\operatorname{gf}(x)=-\left(4 x^{2}-12 x\right)+b$

Attempt use of discriminant or relate to range of f
Obtain $64+16 b<0$ or $9+b<5$
B1

Obtain $b<-4$
or equiv
A1 4
13

